Supporting Information

Structure and electronic properties of $[\text{Ca}_{24}\text{Al}_{28}\text{O}_{64}]^{4+} \cdot 4\text{e}^-$ surfaces: opportunity for controlled charge transfer

Phuong-Vu Ong,† Hideo Hosono,*‡ and Peter V. Sushko*,†

†Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
‡Materials Research Center of Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8053, Japan

E-mail: hosono@msl.titech.ac.jp; peter.sushko@pnnl.gov

July 19, 2018

Here we compare surface energies obtained from local density approximations (LDA) and Perdew-Burke-Ernzerhoff (PBE) functional form of the generalized gradient approximation (GGA). We show results on variation of oxygen chemical potential, $\Delta \mu_O$, as a function of temperature and oxygen pressure. Finally, we show variation of nominal ionic charge of a lattice cage along a surface normal.

Figure S1 shows free energy as a function of $\Delta \mu_O$ (bottom axis) and $\Delta \mu_{Ca}$ (top axis), obtained from LDA and PBE approximations for (001)$_1$, average of (111)$_1 X^+_3$ and X^{-3}, and (110)$_1 X_{t}$, X_{s}, and Z_{s} surface. It shows that the PBE surface energies are lower by 25 − 35%, compared to those obtained by the LDA. Moreover, crossover points where reversal of relative stability occurs are significantly shifted. Consequently, these altogether can reverse
Figure S1: Left panel: free energy as a function of $\Delta \mu_O$ (bottom axis) and $\Delta \mu_{Ca}$ (top axis), obtained from LDA and PBE approximations for (001)X and average of (111)X^3_+ and X^3_- surface. The shaded area indicate the $\Delta \mu_O$ interval corresponding to temperature \sim900-1050$^\circ$C and pressure \sim10$^{-8}$ used for surface preparation. Right panel: the same as the left one but for (110)X_l, X_s, and Z_s surface.

relative stability of the surfaces. For example, PBE free energy of the (110)Z_s is lower than that of the (110)X_l around $\Delta \mu_O = -3.0$ eV; but the opposite is predicted by the LDA results. Nevertheless, the LDA and PBE results are consistent on relative stability of the surfaces at O-rich/Ca-poor and O-poor/Ca-rich conditions. In addition, the surface energies are close to one another under the experimental conditions of temperature \sim900 – 1050$^\circ$C and pressure \sim10$^{-8}$ (shaded areas) used for surface preparation.1

Figure S2 shows dependence of variation of oxygen chemical potential, $\Delta \mu_O$, on temperature and oxygen pressure. The variation $\Delta \mu_O$ is defined by referring chemical potential of oxygen species, μ_O, to one half of the energy of the O$_2$ in its triplet ground state: $\Delta \mu_O = \mu_O - E(O_2)/2$. The dependence of μ_O on temperature, T, and oxygen pressure, p_{O_2}, is governed by the Maxwell's relation $(\partial \mu_O/\partial p_{O_2})_T = (k_B T/2)/p_{O_2}$, where $k_B=8.617 \times 10^{-5}$ eV/K is the Boltzmann constant. Details on solution of this equation have
been published elsewhere.2,3 Under the experimental conditions, $\Delta \mu_O$ varies from -3.3 to -2.8 eV (closed dashed line).

Figure S3 shows variation of nominal ionic charge, Q_{cage}, of a lattice cage along a surface normal for the (001)$X||X$, (110)X_ℓ and Z_{sv}, and (111)$X^3_3||X^3_3$ slab. The Q_{cage} of a cage k is calculated by $Q_{cage}(k) = \sum_{i=1}^{N} Z_{i,k}/n_{i,k}$, where $N = 30$ is the number of atoms per cage; $Z_{i,k}$ and $n_{i,k}$ are nominal ionic charge and order of atom i in the cage k, respectively. The $n_{i,k}$ is the number of cages which share the atom (i, k). In the bulk-like region, Q_{cage} attains the value of $|e|/3$, which is the ionic charge of a lattice cage in a bulk C12A7:e^-. For all of the slabs, Q_{cage} is considerably increased at the terminating cage layers. This causes extra-framework electrons to accumulate at the surfaces. Interestingly, the subsurface layers has negative Q_{cage} values, meaning an electronic charge depletion in these layers. For the (001) and (110) slabs, Q_{cage} behavior is symmetric, indicating equivalent charge distributions at the top and bottom surfaces. In contrast, for the (111)$X^3_-||X^3_+$ slab, Q_{cage} shows an asymmetric behavior with a much higher ionic charge at the top surface X^3_+. Consequently, electronic
Figure S3: Variation of nominal ionic charge Q_{cage} of a lattice cage along a surface normal for the (001) $X||X$, (110) X_{ℓ} and Z_{s}, and (111) $X_{3}^{\perp}||X_{3}^{\perp}$ slab. For each case, two different slab thicknesses, w (number of cage layers), are considered. The horizontal dashed lines indicate Q_{cage} value of a cage in a bulk C12A7:e^{-}.

charge density is considerably higher at the top surface, compared to the bottom one, X_{3}^{\perp}.

References

(1) Yoshitake Toda and Yousuke Kubota and Masahiro Hirano and Hiroyuki Hirayama and Hideo Hosono, ACS Nano 5, 1907-1914 (2011)
